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Wave formation on a thin liquid layer used for de-icing air-plane wings is 
investigated by studying the stability of air flow over a liquid-coated flat plate a t  
zero angle of incidence. The ratio of the viscosity of the liquid to that of air is very 
high (over half a million), and the Reynolds number based on liquid depth and air 
viscosity is of the order of a few thousand in actual practice. Under these 
circumstances the analysis gives two formulas, in closed form, for the growth rate 
and phase velocity of the waves in terms of the wavenumber and other relevant 
parameters, including the Froude number F representing the gravity effect and a 
parameter S representing the surface-tension effect. In the calculation, the 
wavenumber is not restricted in any way, 

The wavenumber of the waves that one expects to observe is that for which the 
growth rate is the maximum. The instability is one in which the viscosity difference 
between the two fluids (air and liquid) plays the dominant role, and is of the kind 
found by Yih (1967). 

1. Introduction 
In wintertime in northern countries, ice formation or snow accumulation on 

airplane wings while the airplanes are on the ground poses a threat to safety of flight. 
The practice of de-icing consists in spraying on the wings a layer of non-Newtonian 
liquid which has a very high viscosity a t  low shear rates but lower viscosity a t  higher 
shear rates, so that i t  can stay on the wings for a long time while the airplane is a t  
rest, but, is blown off after the airplane is in flight. But during a period after take-off 
and before the liquid is finally blown off, waves are formed on the liquid, which may 
affect the aerodynamic behaviour of the wings. The instability of the flow of the 
fluids (air and liquid) responsible for this formation is therefore a problem of practical 
interest, and is the subject of this study. For simplicity we shall consider the wing 
as a flat plate at zero angle of incidence. 

The analysis in this paper will show that the instability is one in which the 
difference in viscosity of the two fluids plays the dominant role, because it induces 
a jump in the velocity gradient. Thus it is of the kind found by Yih (1967) and further 
investigated by Li (1969) and Hickox (1970), among other later workers, for long 
waves, and by Hooper & Boyd (1983), for waves not necessarily long. This study 
differs from the long-wave treatments in that no restriction is placed on the 
wavenumber, and that the Reynolds number is assumed large compared with unity. 
It differs from the work of Hooper & Boyd in that the problem chosen not only does 
not require infinite velocity a t  boundaries infinitely far away, but also is of some 
practical interest, and in that the viscosity ratio is very high, allowing results for the 
growth rate and the phase velocity of the disturbance to be obtained in closed 
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formulas in terms of the wavenumber and the other relevant parameters, including 
those representing gravity and surface-tension effects. 

Since the liquid is non-Newtonian, it was thought a t  first that the nonlinear 
constitution equations of the liquid should be constructed and used. The construction 
was done by using the table of viscosity variation with shear rate.provided by the 
manufacturer of the de-icing liquid (Hoechst 17041, and by assuming the simplest 
tensorially consistent forms of the constitutive equations - actually by allowing the 
viscosity to contain invariants of the rate-of-deformation tensor. When the result 
was used in the equations of motion we found on elimination of the pressure terms 
a fourth-order differential equation like the Orr-Sommerfeld equation, but with 
additional t,erms. However, these terms turned out to be very small, as a result of the 
smallness of the rates of deformation in the primary flow of the liquid. We were 
therefore spared the pain of dealing with the non-Newtonian nature of the liquid, and 
could simply treat as constant the viscosity a t  the prevailing shear rate of the 
primary flow. This simplifies matters considerably. 

2. The primary flow 
We consider Blasius flow over a horizontal flat plate at zero angle of incidence, 

shown in figure 1. The free-stream velocity is denoted by oo, X is measured along the 
plate form its leading edge, and Y measured vertically upward from the undisturbed 
interface. We shall ignore the variation of the liquid depth d with X in the 
determination of the primary flow. 

The viscosity of the air flow will be denoted by p, and that of the liquid by p2. The 
ratio 

is very large, and consequently (as will be shown later) the interfacial velocity os is 
very low. Then the flow of the air is just Blasius flow. The velocity of air in the 
direction of increasing X, measured in units of oo, is 

( 1 )  m = PZ/P 

where f satisfies 

and 

u, = P ( r ) ,  
2f +#” = 0, 

7 = ( O o / v X ) ~ Y ,  

with v = p./p denoting the kinematic viscosity of air and p its density. 
Since, as is well known, 

f”(0) = 0.332, 

the shear stress a t  the interface is 

r0 = 0.332pO0 (o,,/vX);. (4) 

Since the depth d of the liquid is assumed constant, the velocity distribution in the 
liquid is linear, and if os denotes the velocity of the interface, continuity of shear stress 

( 5 )  
demands 

which determines os. The dimensionless velocity gradient in the liquid is 

(6) 

p2 OSld = 70,  

a2 = (O8/O0) x 1 = os./oo = u,, 
which can be shown to be very small for practical cases of interest. In (6), Us is the 
vclocity at  the interface in units of oO. 

For t,he kind of instability we have in mind, the variation of U ,  near the interface 
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t 

FIGURE 1 .  Definition sketch. 

is the most important, and the curvature of U, given by ( 2 )  is zero at  Y = 0, so that we 
can profitably replace (2) by 

U, = Y / b d  for 0 d Y d bd,  
for Y 2 bd. } (7)  

31 (bd) = 1, (8) 

u, = 1 

The boundary-layer thickness is thereby replaced by bd, where b is a dimensionless 
number defined by 

ay Y-0 

in which (recall that U, is in units of U,) 

1- - 0.332 Ri /X au 
ay 

by virtue of (4), with 

As to the liquid, its velocity in units of U,, is 

R, = O,,X/v. 

U2 = a2 Yld. 

Introducing the dimensionless coordinates 

x = X / d ,  y = Y / d ,  

we can write (7) and (10) as 

U, = a,y for 0 d y d b,  with a,  = b-l, 
U ,  = 1 for y 2 b, 

and u2 = a2 y .  

(9) 

3. Formulation of the stability problem 
The flow is nearly parallel. For any value of 2, we shall assume the flow to be a 

parallel one, with the velocity distribution given by (12) and (13), in which a, and u2 
are henceforth treated as constant, and not varying with x. This is the standard 
procedure for treating nearly parallel flows. In  it, the origin of x need not be at  the 
leading edge of the flat plate, but may be taken at  the section where the stability of 
the flow is being studied. 
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The velocity components u and v (both in units of U,) in the directions of increasing 
x and y satisfy the continuity equation 

u,+vy = 0,  

in which subscripts indicate partial differentiation. If the pressure p is measured in 
units of pU;: and the time t in units of d/U,, the Navier-Stokes equations are, for air, 

Du 
- Dt = -p,+R-’V2u, 

Dv 
Dt 
- = -py-Fi2 +R-‘V2v, 

are the Reynolds number and Froude number, respectively, and 

~a - a a a 2  a 2  

~t at ax ay ay2 ay2 

__ - -+u-+v-, v2 = -+-. 

We shall, as usual, resolve the flow into its primary and perturbation parts. For 
air, 

u = U,+U‘, v = v r ,  p = P+p’, 

in which P is the dimensionless pressure for the primary flow, assumed independent 
of x. Then, since 

u;+v; = 0, 

we can introduce the stream function *, and write 

Assume 

where 

is the eigenvalue. For given R, Fo, and other relevant parameters, we seek to 
determine the a which makes the growth rate 

cri = aci (20) 

ia{(Ul-c)q5’- Vlq5} = -iaf+R-’(q5”’-a2q5’), (21) 

a2(c-U,)q5 =f’+(ia/R)(q5”-a2q5), ( 2 2 )  

the maximum. With (17) and (18), (14) and (15) become, upon linearization, 

in which primes indicate differentiation with respect to y. Note that for the primary 
flow 

which allows us to obtain (22) from (15). Since U; is the constant a,, (21) and (22) give 
the Orr-Sommerfeld equation 

(23) 

-Py -Fi z  = 0 ,  

$“-2a2#’+a4$ = iuR(U, -c) ($”-a2q5). 

For the liquid, we choose to retain the meanings of R and f, and to write x for q5. 
Then (21) and (22) become 

iw{ ( U, - c )  x’ - U ; x }  = - iaf + (m/R) (x”’ - a2x’), (24) 

(25 )  a2r(c  - U,) = f’ + (iam/R) (x” - a2x), 



Wave formation on a liquid layer for de-icing airplane wings 45 

and the equation corresponding to  (23) is 

~ ~ “ - 2 a ~ ~ + a ~ ~  = iaRm-’r(U,-c) (x”-a2x) ,  (26) 

in which r = PZIP (27 1 
is the density ratio, with pz denoting the density of the liquid. 

We now turn to the boundary conditions. For clarity let $ be denoted by $o in the 
free stream ( b  d y),  and by for the boundary layer (0 6 y 6 b) .  For the upper fluid, 

(28) 
then, 

$,,+O as y + m .  

A t  y = b, U,  given by (12) is not analytic, and four conditions should be imposed 
there. For this purpose let q1 be the displacement of the (artificial) lower boundary 
of the free stream, when disturbed, from y = b. Then the kinematic condition at  
y = b i s  

since Ul(b )  = 1 .  Thus 7 l - C - 1  - m e x p i a ( s - c t ) .  (29) 

The continuity of velocity then demands 

$db) = $l (b)>  (30) 

since = b-I for the boundary layer. Continuity of shear stress a t  y = b demands 

(32) $;(b) + a2$o(b) = $r(b) + a2$,(b), 

and continuity of normal stress (see Yih 1967, equations (28)-(30), for derivation) 
demands 

{ - iaR(c - 
(33) 

a t  y = b, since there is no density difference across y = b, and no surface tension 
there. For (32), recall that in fact the mean shear stress has no jump a t  y = b. 

- $: + a’&} + 2aZ& 
={ - iaR[(c - l)$i + a, - $7 +az#;} + 2a291 

For the liquid layer the no-slip conditions a t  the solid boundary are 

x ( - l )  = o ,  x’(-l) = o .  (34) 

At the interface of air and liquid, where y = 0, the conditions are as derived in Yih 
(1967, p. 341), and are, upon writing $ for for brevity, 

$(O) = X ( O ) >  (35) 

$“(O) + az$(0) = m{X”(O) + a2x(0)}, (37) 

- iaR(c’$’+ al$) - ($r’r - 29‘) + 201~9’ + irccR(c’x’ + a2X) 

+ m(xrrr - a’x’) - 2a2mx‘ = i&(F-’ + a’S) $/c‘ ,  (38) 

in which F-’ = ( r -  1) F02, S = T / p q d ,  c’ = c-a,. (39) 

Since, as will be shown, a2 is very small, we may put a2 to zero, and write c for c‘ in 
(35)-(38). In (38), all variables are for y = 0. The T in (39) is surface tension. 
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The differential system governing stability of the flow then consists of differential 
equations (23) and (26), and boundary conditions (28), and (30)-(38). It seems a t  first 
sight daunting, since R is large and 01 is unrestricted. It is surprising and fortunate 
that an explicit, analytical solution is possible, principally because m is extremely 
large. This will be shown in what follows. 

4. A simplification 
We shall first simplify boundary conditions (31)-(33), while keeping (30) intact, and 

show that the four boundary conditions a t  y = b can be reduced to two, in which only 
the inviscid solutions of (23) appear. 

The solution of (23) satisfying (28) is, for the free stream, 

sincc U ,  = 1 for the free stream. We have taken that root of P which has a positive 
real part. The c. in (41)  is very small and therefore negligible, as will be verified 
a posteriori. The solution for (23) for #, is 

$1 = A1lexp (-aY)+A12exp (ay)+A13exp{P(y-bb)}' (42) 

This is only approximate, for (23) has one variable coefficient when applied to  the 
boundary layer. But (42) is sufficiently accurate, for exp {p(y- b)}  decreases toward 
zero as y decreases from b only a small distance, since /3 is large (because R is large). 
Thus the, variability of U, will not have an appreciable effect on the development 
here. Using (40) and (42) in (30)-(32), we readily find that if A,,, A,, ,  and A,, are of 
O(1) in magnitude, A,, and A,,  are both of order O(R-;) and their difference of order 
O(R-l). Furthermore, substituting (40) and (42) into (33), we find that the brace on 
the right-hand side does not contain A,,, and in the brace on the other side the term 
containing A,, is of O(R-i). The 9' and 4; are all of O(1). Thus (33) becomes, upon 
division by i d  and ignoring terms of O(R-$, a t  y = b, 

( c - l ) # h =  (c-1)qq+%d%, (43) 

in which all viscous solutions (i.e. those with coefficient A,, or Al,) are dropped. 
Correspondingly, in 

(44) 

which is (30), one now need only use the inviscid solutions, as in (43). Note that (43) 
incidentally agrees with (31). That is because there is no jump either in density or in 
velocity of the primary flow. 

5. Construction of the eigenfunction 6 
The simplification of the boundary conditions at  y = b to (43) and (44), which 

consist now entirely of inviscid solutions, allows us to construct 4 by forming its 
inviscid part first, and then adding to that the viscous part to take care of the 
interfacial conditions at  y = 0. 

To obtain the inviscid-part, let #o = AoePay, 145) 

= A ,  eau + A, e-av. (46) 

These are just simplified versions of (40) and (42), with the viscous parts therein 
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omitted. Application of (43) and (44) give two equations relating the A, the solution 
of which gives 

(47) 

so that $ , ( O )  = A , + A ,  = - ( l - - h - ~ ) A , ,  (48) 

1 
,, A , =  1- ( 2ab( 1 - c) 

A, = 1 e-2abA 
2ab( 1 - c) 

1 
l - c  

in which 

Note that O G A d l .  

Assuming c to the very small compared with 1, we can write (48) and (49) as 

$1(0) = ( l - -h)Ao,  

&(O) = {b-'-a(l+A)}A,. 

These will be used in place of (48) and (49). 
Equation (45) already satisfies condition (28), and (45) and (46) satisfy (43) and 

(44) if A, and A, are given by (47). We shall now add to $, the viscous solution 
A3$3 to from the eigenfunction # for the boundary layer (0 < y < b) .  Thus, 

$ = $1 +A3 $3? 

in which (see Lin 1955, p. 40) 

$3 = dy HQ1) {g(iq)g}y:dy, 

where 

(53) 

(54) 

where ye is the value of y at which U, = c. Since c is expected to be very small, we 
can henceforth take yc = 0. The subscript 3 in $3 is used to honour tradition. There 
is no $*. In  (52), A,  is not yet related to  A, .  That relation awaits the application of 
the interfacial conditions. 

We note in passing that neither $1 nor $3 is singular, nor indeed is $o.  Since 
U," = 0, the well-known Rayleigh equation loses its singular term, and the solutions 
$, and $1, consisting of exponential functions, are exact. This is the great advantage 
of adopting (12) to replace (2). That $3 is not singular is of course well known. In 
computing #3, Holstein (1950) took advantage of the fact that R is large, and thereby 
ignored terms of smaller orders of magnitude to obtain the asymptotic form of the 
Orr-Sommerfeld equation, which he proceeded to solve to obtain $3. But that 
asymptotic form is not singular. Hence $3 is not singular. 

6. Construction of the eigenfunction x 
We shall show that in cases of practical interest a, in (13) and therefore U, in (26) 

are very small compared with 1 since m is large. Furthermore it will be assumed 
(since we do not know c yet) that &rm-lc in (26) is very small since m is very large. 
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This assumption will be verified a posteriori. Under this assumption, then, the right- 
hand side can be neglected and the solution of (26) is 

x = Acoshay+Bsinhay+Cycoshay+Dysinhay. (55)  

x”(0) + a22(0) = 0, (56) 

which gives -aA = D. (57) 

aA = (a-sinhacosha)C+(sinh’a)D, (58)  

Since m is very large, we shall simplify (37) to 

Applying (34), and eliminating B ,  we have 

which combines with (57) to give 

(a cosh’ a) A = (a - sinh a cosh a) C. 

(cosh2 a + a 2 ) A  = (sinh a cosh a-a) B 

Finally x(-1) = 0 gives 

Thus all the coefficients B,  C ,  and D have been expressed in terms of A .  
The following equalities will be useful later : 

x(0 )  = A ,  (61) 

A ,  (62) 
a3 

sinh a cosh a - a x’(0) = aB+C = 

2a3(cosh2 a + a2) A. 
sinh a cosh a - a 

~ ’ ” ( 0 )  - 3a2x’(0) = - 

We are now in a position to apply the interfacial conditions. 

7. Calculation of the growth rate 

of $ ( O )  between (35) and (36) gives 
Upon neglecting u2 in the parentheses on the right-hand side of (36), elimination 

- 

Let 

(d$3/d7)7=0 = y ?  (66) 

where the /3 is not the same as that in (41), which is no longer needed. Holstein (1950, 

p. 36) gave p = -0.8660+0.232Oi, y = 1.1154+0.298%. 

Equation (64) then takes the form 
bc’a3 

sinh a cosh a - a -bc’ [ {b- ’ -a( l  + A ) } A O + ~ - l y A 3 ]  = A -  A .  

On the assumption that c’ is very small for large m (to be verified u posteriori), a 
glance a t  (60) reassures us that the last term in (67) is small compared with A ,  so that 
(67) can be written as 

Equations (50) ,  (52), and (61) enable us to write (35) as 

- ~ ’ [ { l - ~ b ( l + h ) } A , + b e - ~ y A ~ ]  = A .  (68) 

(1  -A)A0+pA3 = A .  (69) 
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Elimination of A ,  between (68) and (69) gives 

c’{- l + a b ( l + h ) + b e - l ~ ~ - ’ ( l - A ) } A o  = ( l + b ~ ’ / T ’ c ’ ) A .  

Since C ~ C ’  is still very small, and 

7P-l = - (1.1155 + 0.644Oi), 

-bc’(P,+Pi)Ao = A ,  this can be written as 

where (P is now not the pressure in the primary flow) 

P = P,+Pi 
= b - l - a ( l + A ) +  -y,T%-l(l-A). (71) 

Equation (70) shows that the A in (69) can be neglected, since c‘ is small. Thus 

( l -h)A,+PA,  = 0, 

or A ,  = -,T’(i-A)A,, 

/r’( 1 - A )  A .  
1 

bc’(P, + Pi) 
- - 

We now turn to (38) to evaluate c‘ and a, = ac,. 
Because a2 is very small, (36) enables us to write (38) as 

i(r- 1)aRc’~”m(~’’’-3a2~’)-(@”-3a2#’)-iiccR(F-2+a2X) x/c’ = 0, (73) 

all functions being evaluated a t  y = 0. All the terms involving x have been given by 
(61), (62), and (63). It remains to evaluate the term containing q4, which is 

#“ I -  3a2q4’ = -2a3$; +A,{e-3(d3$,/dy3) - 3a3€-’ d$,/dy} 

= -2a2(b-’-a(l +A))A,+s-3( -i/3-3a2~2r)A3, 

where d3$,/dy3 at y = 0 is found by integration by parts of the differential equation 
for q4,, with q5, (0) given by (65). 

Using (70) and (72), we have 

$“‘-3a2$‘ = aRA Q, + iQi 
C’b2 p, + iPi ’ (74) 

(75) where 

In the above calculation, recall that e3 = b / a R .  
Examination of (61), (62), (63), and (74) shows that (73) is a quadratic equation in 

c’. But even the solution of a quadratic equation is not necessary. Because m is very 
large, the two roots of the quadratic equation are obtained for the first root by 
ignoring the last term, and for the second root by ignoring the first term. In the first 
case a large negative ci is obtained, corresponding to strong damping. Any instability 
would have to come from the second case, which gives 

2a 
R 

Q = Q,+iQi = ( 1 - A ) ( i + 3 y ~ - 1 a 2 e Z ) - - { 1 - a b ( l + h ) } .  

2a2( cosh2a + a2) b2mc’ 
sinh a cosh a - a R P, + *i 
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or, with c: = c,--.a,, ui = aci, 

b2m , P, Q, -+-pi Qi sinh a cosh a-a 

IPI2 2a2(cosh2 a + a2) ' 7% = (77) 

Equation (77) gives the phase velocity and (78) gives the growth rate. They are the 
main results of this study. 

From (761, i t  is clear that the instability under study arises from t,he term Q/P. 
Examination of (7l)shows that the dominant term in P is 

-yp-l E -1 (1-4, 

since E is small, and examination of (75) shows that the dominant term in Q is 

i( 1 - A ) .  

iPy-le. Thus the dominant term in Q l P  is 

Since P = $3(0 ) ,  Y = 98% 
and $3 is the solution of $2 = iaRUl(0) (y-yc) $:, 

in which only the velocity gradient U' (0) appears (and no other representatives of U,), 
it is clear that the instability under study arises only from the velocity gradients of 
the fluids at their interface, and that the exact form of the velocity profile of the air 
and, in particular, its curvature (to which fluid dynamicists have historically 
attached an enormous importance), have little consequence here. The difference in 
the velocity gradients of the two fluids come from the difference in their viscosity, 
and therefore the instability under examination here is of the kind found by Yih 
(1967). 

Note also that, since the m under consideration is roughly 250 times R, (76) 
presents no difficulty in determining c' when both m and R are large, because we do 
not regard them as tending toward infinity, but, rather, simply use their actual 
values. 

In the next section we shall take a case for which some experimental data are 
available, and calculate the a for which ri is the maximum, for given values of the 
relevant parameters b,  R, F ,  and S.  This will be compared with the observed a. To 
make sure that this calculation will not be futile, however, it  is timely to look at  (78) 
more closely here. Examination of P defined by (71) and Q defined by (75) reveals 
that, since A+ 1 as a-0, 

P+b-' and Q+O as a+O. 

Thus the bracket in (78) becomes negative for small a, and the flow is stable. 
Furthermore, for fixed R and b 

P - a and Q - 2 b R - l ~ ~  for large a, 

so that again the bracket becomes negative. For small enough F-' and S and 
intermediate a,  instability is possible, and whenever there is instability a maximum 
ui is guaranteed. Note from the definitions of F-2 and S that they are small if oo is 
large. Thus instability is likely at high velocities. 
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8. Application of the theory to a special case 
Some experimental data on wave formation in a de-icing fluid on an experimental 

wing are available in a report by Hendrickson & Hill (1987, henceforth referred to as 
HH). The experiments were not elaborate, but the data give indications of the 
wavelengths of the waves, and the order of magnitude of their phase velocity. It 
seems desirable that (78) be applied to  one of the experiments. 

In  these experiments, the de-icing fluid was the Hoechst 1704 liquid. In  the ex- 
periment chosen for comparison, it was not diluted, and its viscosity (p2) near 0 "C 
or below and a t  the prevailing (very small) shear rate to which it was subjected, was 
near 10 Pa s. We shall use this figure for its viscosity. Since p for air a t  - 10 "C 
is 1.67 x Pa s, the viscosity ratio m is 598802, which is very large indeed. Its 
surface tension a t  - 10 "C is 31.3 mN/m, which will be used for T. The liquid-air 
density ratio r is 972. The free-stream speed was 53 knots, or 27.28 m/s. The chord 
length was 0.279 m. 

We shall take for investigation the flow a t  the :-chord section, where X = 0.2092 
m, because the uncertainty of depth seems less there and the waves seem more 
developed. The initial average depth of the liquid was 0.91 mm, but the data show 
considerable variation even in the initial depth. After 5.6 s, the depth differed from 
its initial value everywhere, and near the %-chord point figure 19 of HH gives 
(roughly) a mean depth of 1.1 mm. This will be the value taken for d .  

The kinematic viscosity v for air is 1.24 x loe5 m2/s. At $chord, the Reynolds 
number R, based on X = 0.2092 m and the free-stream speed is 460248. The shear 
stress at the interface, upon neglect of the interfacial velocity which will be shown 
to be small, is 70 = 29364.09~. Thus, if ol denotes the dimensional velocity in air, 

dOJdY = 29364.09/~ a t  Y = 0, 

or, in dimensionless terms, Ul = 1.1841 a t  y = 0. 

Since Ul = b-l, we have 

The Reynolds number R based on d ,  v, and the free-stream velocity is 

b = 0.8446. 

R = 2419. 

p2dO2/dY = 29364.09p/s, For the liquid, 

or d02/dY = 0.0490/s, 

This gives 

which is very small indeed, as assumed. The dimensional interfacial velocity 
corresponding to this value of a2 is 

a2 = U2 = dU2/dy = 1.976 x 

Os = a2 Oo = 0.0539mm/s, 

which is negligible, as assumed, for the purpose of calculating T~ (shear stress a t  the 
interface, for the primary flow). The values of F P 2  and S can be readily computed. 

Summarizing, we have, for free-stream speed 27.28 m/s, d = 1.1 mm, and r = 972, 

R = 2419, b = 0.8446, m = 598802, 
F-' = 0.014101, S = 0.27621. 

With these parameters given, a brief calculation shows that the flow is stable for 

a < 0.01 or a 2 0.5 (79) 
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and is neutrally stable, or very nearly so, when the equality signs hold. The 
maximum gi occurs at 

a t  which (with gi = aci) 
a = 0.33, (80) 

b2m 
---gi = 8.86 x lop4, R 

b2m 
R - c ;  = 2.58 x 10-3. 

Thus the assumption that c' ( = c i  + i q )  is small is amply verified. The value of a of 
the waves observed by HH (pp. 29-30) is, by the best estimate from their figure 19 
on p. 30, a = 0.5. 

Thus the theoretical prediction of a is 34 % too low, but seems to be of the right order 
of magnitude. 

Although HH did not measure cr, their photographs taken a t  various times suggest 
that it is small, certainly far less than the c, predicted for the classical 
Tollmien-Schlichting waves for Blasius flow, which is of the order of 0.2 (Shen 1954, 
see Schlichting 1960, p. 396), or a t  least 0.05 according to the earlier prediction of 
Tollmien (1929, see Schlichting 1960, p. 397). The a* for the most unstable mode in 
the Tollmien- Schlichting theory for Blasius flow is approximately 0.26 (Shen 1954, 
or Schlichting 1960, p. 396), where a* is the wavenumber based on the momentum 
thickness 6*, which is 0.534 mm for the case at hand. This a* corresponds to an a 
(based on d )  of only 0.126, far less than the experimental value of 0.5. (Note that a* 
= 0.26 corresponds to a Reynolds number based on 6" of 1174.) Thus the waves 
photographed by HH do not seem to be classical Tollmien-Schlichting waves. 

(82) 

9. Conclusion 
With the assumptions that u2 and c' arc very small verified a posteriori, (77) gives 

the phase velocity and (78) the growth rate. The reasonable agreement between the 
theoretical and experimental values of the wavenumber of the most unstable mode 
suggests that the wave formation arises from the instability treated here, which is of 
the kind found earlier by Yih (1967), and is a result principally of the viscosity 
differenccs between air and the de-icing liquid. 
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